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Introduction

When stellar light passes through a planet's atmosphere, molecules in the atmosphere can absorb or
re-emit different light wavelengths, which leaves a characteristic fingerprint on the light that reaches us.
By measuring the change in the dips (transit depth) as a function of wavelength/frequency of light, we
can work out which molecules or clouds absorb photons in the atmosphere and understand the planet's
chemistry, temperature, cloud coverage, wind speeds, and climate.

One of the main challenges of studying exoplanetary atmospheres is the complexity of the planetary
models required to understand the complex processes happening in their atmospheres, including
chemistries, clouds, and dynamics. To overcome the challenges of analyzing spectral data from
exoplanetary atmospheres, machine learning (ML) techniques can be used. By using ML algorithms to
classify and characterize exoplanetary atmospheres based on their spectral features, we can obtain
more reliable and comprehensive results than traditional manual inspection and interpretation methods.
ML techniques can also help identify potential candidates for further study and determine which
exoplanets may have the necessary conditions for life to exist.



Literature Review (MN18)

The introduction of this paper discusses the importance of studying exoplanet atmospheres and the challenges associated
with analyzing the data obtained from observations. It highlights the need for new methods that can accurately and
efficiently retrieve atmospheric parameters from exoplanet data. The paper proposes a new method that uses machine
learning algorithms to analyze exoplanet data and retrieve atmospheric parameters, and it presents the results of testing
this method on simulated data. The introduction also provides an overview of the structure of the paper and the
contributions of the research.

The paper uses simulated data to test the new method for analyzing exoplanet atmospheres using machine learning
algorithms. The authors generated a grid of atmospheric models with varying parameters, such as the presence and
abundance of different molecules, and used this grid to train the machine learning algorithm. They then used the algorithm
to retrieve atmospheric parameters from the simulated data and compared the results to the true parameters used to
generate the data.

They trained their model on 80,000 synthetic spectra and used it to analyze 20,000 more synthetic spectra. They found
that the outcomes of the retrievals converged when the number of trees used exceeded 100. They also tested the retrieval
outcomes with different levels of assumed noise floors, which represent the uncertainty in the transit depths of the data
points in the synthetic WFC3 spectra. They found that the variance associated with the true versus predicted values of the
parameters decreased when the assumed noise floor was lower. Overall, these tests demonstrate the robustness of the
authors' implementation of the random forest method for analyzing the synthetic spectra.
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DataSet Model

Data based on a simple analytical
model derived in Heng & Kitzmann
(2017) which provides a range of
atmospheric parameters and
corresponding transit spectra for
testing and validating inversion
methods.

Random Forest

Simulated photometric observational
data of hot Jupiters generated by the
PLanetary Atmospheric Transmission
for Observer Noobs (PLATON) software

Random Forest

The aura forward model (Pinhas et al.
2018), is used to generate synthetic
spectra in the wavelength range of WFC3

Random Forest

Limitations

Simulated Data
Limited set of parameters
Biases in the training data

Simulated Data
Focus on hot Jupiters
Using just RF and no
comparison

The paper only considers two
hot Jupiter exoplanets
Their approach struggles to

deal with higher dimensional
parameter spaces efficiently.



Simulated Data (100,000)(80% split for training and 20% for testing)

0 1 2 3 4 5 6 7 8 9 10 1 12 13

0 1.376389 1.374745 1.413392 1.450904 1.466375 1.443057 1.471660 1.432622 1.478647 1.517601 1.533182 1.553194 1.544717 2712.064538 -9.2036
1 1.603904 1.609323 1.628826 1.620339 1.637257 1.658848 1.646935 1.654072 1.682700 1.702930 1.704248 1.688455 1.672496 2392.301318 -0.4577
1.478304 1.484133 1.535701 1.549377 1.562368 1.535739 1.546677 1.523513 1.562554 1.504719 1.594487 1.615531 1.614822 1892.056087 -4.7446
1.376006 1.374236 1.381826 1.371236 1.372663 1.391107 1.391560 1.388384 1.409598 1.428910 1.426103 1.415693 1.405483 2258.214546 -6.5137

s.ow N

1.563088 1.574923 1.570010 1.562674 1.564904 1.566797 1.572265 1.567724 1.556413 1.575183 1.565158 1.564148 1.560290 2752.310725 -10.1175

79994 1.547858 1.541549 1.577890 1.592368 1.614620 1.588436 1.606700 1.582812 1.615082 1.660816 1.671223 1.710971 1.688608 2380.950717 -4.6434
79995 1.690129 1.685105 1.697325 1.695480 1.694271 1.688963 1.693295 1.691038 1.683915 1.691066 1.685970 1.703655 1.694314 2608.258100 -12.8021
79996 1.458842 1.448742 1.460723 1.462699 1.458183 1.472587 1.467903 1.461175 1.486257 1.493419 1.499475 1.497590 1.472219 2406.213138 -5.1473
79997 1.540779 1.523293 1.525826 1.527753 1.527622 1.524317 1.523190 1.530734 1.522610 1.535232 1.524432 1.534980 1.523554 1234.629377 -3.0927
79998 1.610966 1.637177 1.662791 1.642905 1.654042 1.662262 1.666162 1.666940 1.697723 1.720909 1.719560 1.712996 1.698128 2526.404810 -0.4262

79999 rows x 18 columns

We used the dataset used by the authors of the MN18 paper for initial experimentation. The dataset of 100,000
noisy synthetic spectra was generated by using the forward model of Heng & Kitzmann (2017). The spectra
were generated in the wavelength range 0.8 - 1.7 um, and five parameters described each spectrum:
temperature (T), volume mixing ratios of water (X_{H20}), ammonia (X_{NH3}), and hydrogen cyanide
(X_{HCN}), and a constant cloud opacity (k_o). The values of the parameters were chosen randomly from a
uniform or log-uniform distribution.



Prediction for $T (K)$: 1.32e+03 [+967 -492] . HD 209458b

Prediction for H$ 2$0: -7.12 [+4.56 -4.33] Using the model trained on the dataset from the
Prediction for HCN: -7.12 [+3.58 -3.75] MN18 paper to predict the atmospheric composition
Prediction for NH$ 3%$: -11.7 [+7.03 -1.34] of the planet HD209548b.

Prediction for $\kappa 0%: -1.81 [+2.27 -1.63]

Prediction for $T (K)$: 892 [+421 -145] WASP 12-b

Prediction for H$ 2$0: -2.34 [+1.6 -3.12] Using the model trained on the dataset from
Prediction for HCN: -7.52 [+3.97 -3.6] the MN18 paper to predict the atmospheric
Fredection SOE NS 23 ~3-9 149,33 3.1 composition of the planet WASP12-b.

Prediction for $\kappa 0%$: -2.35 [+1.4 -1.32]



Random Forest Algorithm
Trained a Random forest using the generated

data from the models and to predict the
planetary parameters(eg. Temperature) from the
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True (y) versus Predicted (§) values of the temperature by different Regression models
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PyCaret

The Pycaret package was used to
find the best algorithm for a
regression problem and it was
determined that the most suitable
algorithms for the given dataset are
Extra Trees Regressor and Random
Forest Regressor, this suggests that
the data has complex relationships
and the chosen algorithms are
capable of handling such complexity
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Model

Extra Trees Regressor
Random Forest Regressor
Light Gradient Boosting Machine
K Neighbors Regressor
Gradient Boosting Regressor
AdaBoost Regressor

Linear Regression

Bayesian Ridge

Decision Tree Regressor
Ridge Regression

Huber Regressor

Lasso Regression

Passive Aggressive Regressor
Orthogonal Matching Pursuit
Least Angle Regression

Lasso Least Angle Regression
Elastic Net

Dummy Regressor

MAE

238.6207
241.1384
262.3880
244.4891
310.1038
410.2363
407.4809
407.4955
330.1323
412.5893
398.6638
438.0545
411.6459
484.5532
498.9884
547.1923
582.5949
599.6262

MSE

124924.6034
127595.1316
135255.8088
139910.3516
167458.8657
244564.0773
259394.4266
259394.4003
259622.7330
262361.7094
269333.4790
286980.4094
289429.3807
351491.4421
393108.0198
401893.8004
451872.3406
478804.8344

RMSE

353.4246
357.1680
367.7395
374.0161
409.1884
494.5090
509.2784
509.2784
509.4812
512.1870
518.9351
535.6846
537.6923
592.8413
626.9096
633.9365
672.2014
691.9437

R2
0.7390
0.7334
0.7174
0.7077
0.6501
0.4891
0.4581
0.4581
0.4575
0.4519
0.4373
0.4004
0.3954
0.2657
0.1788
0.1604
0.0560
-0.0002

RMSLE
0.2548
0.2570
0.2618
0.2676
0.2888
0.3681
0.3607
0.3607
0.3544
0.3643
0.3566
0.3831
0.3714
0.4267
0.4519
0.4482
0.4697
0.4808

MAPE
0.1829
0.1837
0.1961
0.1826
0.2294
0.3405
0.3106
0.3107
0.2452
0.3163
0.2782
0.3409
0.2830
0.3843
0.3633
0.4440
0.4738
0.4881

TT (Sec)
23830
6.6150
0.0970
0.0990
2.4940
0.4080
0.5150
0.0290
0.1360
0.0180
04110
0.2650
0.2100
0.0180
0.0200
0.0170
0.0190
0.0170



Future Plans

We want to use the Dataset from the Ariel ML Data Challenge which is
generated with Alfnoor, which combines the open source TauREXx 3
atmospheric modelling suite with the official Ariel instrument simulator ArielRad
to produce large-scale simulations of atmospheres.

Use Extra trees regressor because its faster,less compute heavy and best
suites the type of dataset we are using. Try to explore its performance on
wider range of exoplanetary atmospheres and try using it on real observational
data.

Explore the possibility to applying neural networks if time permits.

Developing a more comprehensive and flexible framework for exoplanetary
atmospheric parameter retrieval using machine learning techniques.
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